Number system

Daksha Jaydeep Sagar B.Tech EC

Contains:

- Decimal number system
- Binary number system
- Octal number system
- Hexadecimal number system

Decimal number system

- 0,1,2,3,4,5,6,7,8,9 ten unique symbol, each symbol is called 'digit'.
- Hence called base or radix is 10
- Positional weighted system means value attached with symbol depends upon its position where it placed with respect to decimal point.
- MSB Most Significant Bit greatest positional weight out of all number
- LSB Least Significant Bit lowest positional weight out of all number

▶9's complement

- Need of complement in digital number system :Complements are used by a machine to represent negative number. By taking the complement of a negative number, the number can be converted into another number suitable for machines.
- 9's complement can be perform by subtracting each digit from 9
- If carry is generated answer is called positive , add it to least bit is called all around carry
- If no carry is generated answer is called negative
- Example : 3652 , 695.65

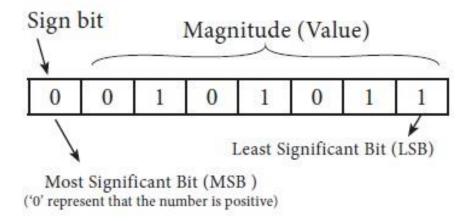
9999		999.99
-3652		-695.65
6347	9's complement	304.34

\geq 10's complement:

- Is generated by adding 1 to 9's complement.
- Example : 3652 , 695.65

9999		999.99
-3652		-695.65
6347	9's complement	304.34
+ 1		+ 1
6348	10's complement	304.35

Subtraction using 9's and 10's complement


1. 896.66 - 659.15 = 421.30

9's complement	steps
896.66	
+ 524.63	9's complement of number to be subtracted
@ 421.29	Result
1	Add around carry
421.30	Answer

10's complement	steps
896.66	
+ 524.64	10's complement of number to be subtracted
1 421.30	Result
	Ignore carry
421.30	Answer

•Signed and Unsigned number:

- In sign magnitude form, extra bit is added is known as sign bit.
- If sign bit is 1- number is negative
- If sign bit is 0 number is positive

Binary number system:

- Only two digits 0 and 1 and base or radix is 2
- Numbers of column is decided by 2ⁿ
 - i.e for $2^1 = 2$ so 0,1

 $2^2 = 4$ so 00,01,10,11 further on.....

• Binary number with its decimal value is shown in below table:

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110

Binary to decimal conversation:

Convert number $(100101.11)_2$ to decimal

• Method -1:

positional weights $-2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 2^{-1} 2^{-2}$ $1 \ 0 \ 0 \ 1 \ 0 \ 1 \ . 1 \ 1$ $=1x2^{5} + 0x2^{4} + 0x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0} + 1x2^{-1} + 1x2^{-2}$ = 32 + 0 + 0 + 4 + 0 + 1 + 0.5 + 0.25= 37.75

• Method -2:

MSB = 1

Multiply by 2, add next bit (1x2)+0=2Multiply by 2, add next bit (2x2)+0=4Multiply by 2, add next bit (4x2)+1=9Multiply by 2, add next bit (9x2)+0=18Multiply by 2, add next bit (18x2)+1=37

Decimal to Binary conversation:

Convert Number 183.875

• Method – 1: Sum of weights

Subtract number from its maximum power 2 number

As $2^7 = 128$ and $2^8 = 256$, so 183-128 = 55 and $2^7 = 1000000$

Now same way $2^5 = 32$ so 55-32 = 23 and $2^5 = 10000$

$$2^4 = 16$$
 so $23 \cdot 16 = 7$ and $2^4 = 1000$

$$2^2 = 4$$
 so $7-4 = 3$ and $2^2 = 10$

$$2^1 = 2$$
 so $3 - 2 = 1$ and $2^1 = 1$

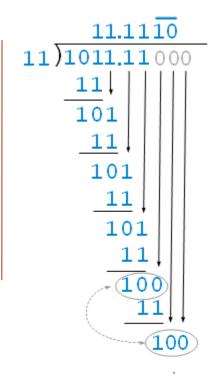
Now reminder is only 1 which is power of 2^0 so it will be as it is = 1

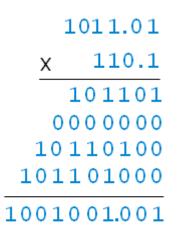
Now add them all 1000000 + 10000 + 1000 + 10 + 1 + 1 = 10110111 (Binary addition)

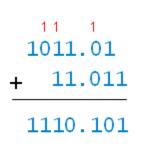
For Fractional part process will be same but it will be in 2^{-1} format So for $875 = (111)_2$

Continue...

Convert Number 183.875


• Method – 2: Double Dabble

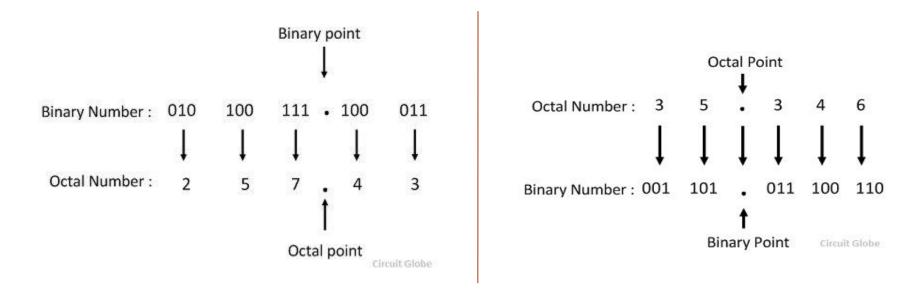

Successive	Division	Reminder
2	183	
2	91	1
2	45	1
2	22	1
2	11	0
2	5	1
2	4	1
2	2	0
2	1	1
	0	


Fractional	Answer	Reminder
Multiply 0.875 by 2	1.750	1
Multiply 0.750 by 2	1.5	1
Multiply 0.5 by 2	1.0	1

So Answer will be $(183.875)_{10} = (10110111.111)_2$

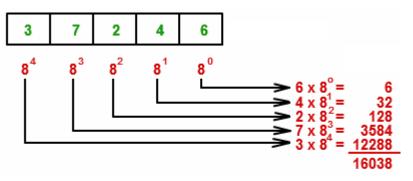
➢ Binary Addition, subtraction, multiplication, division:

Binary Subtraction 0 10	Decimal Subtraction
10101 - <u>10010</u>	2 1 - 1 8
00011	3
00011	₂ = 3 ₁₀


Octal Number system:

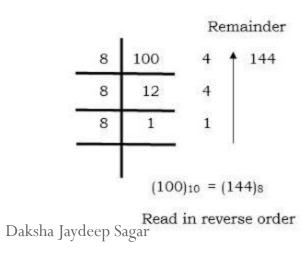
- Radix or base is 8
- 8 independent symbol 0,1,2,3,4,5,6,7
- More useful than binary while dealing with large number of data

Decimal	Octal	Binary	
0	0	0	
1	1	1	
2	2	10	
3	3	11	
4	4	100	
5	5	101	
6	6	110	
7	7	111	


➢Octal to binary and vice versa:

- Its very simple to convert number to binary
- For any binary to octal conversation just make group of 3 i.e. for any binary number from its right most starts making group of 3 and put its octal value.
- For any octal to binary conversation, any octal digit put its 3 digit binary value.

≻Octal to Decimal and vice versa:


• The process will be same as was in binary to decimal conversation

Octal to Decimal conversation

Octal = 37246

Decimal = 16038

Decimal to Octal Conversation

>Octal Addition, Subtraction, Multiplication, Division:

				Carry	
11	carry	<u>Octal</u>	<u>Octal</u>		<u>Dctal</u>
456	= 30210	762	5 x 2 =	$(10)_{10} = (8 \times 1) + 2 = 1$	2
+123	= 8310	x 45	5 x 6 + 1 =	$(31)_{10} = (8 \times 3) + 7 = 3$	37
0 127 0200 10 1	022794047		5 x 7 + <mark>3</mark> =	$(38)_{10} = (8 \times 4) + 6 = 4$	46
601	= 38510	4672	4 x 2 =	$(8)_{10} = (8 \times 1) + 0 = 1$	0
		3710	4 x 6 + 1 =	$(25)_{10} = (8 \times 3) + 1 = 3$	31
			4 x 7 + <mark>3</mark> =	$(31)_{10} = (8 \times 3) + 7 = 3$	37
		43772			

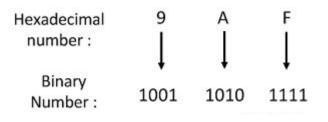
8	borrow
³ 456	= 30210
-173	= 12310
263	= 17910

					2	.2	1
1	5	6	3	7	2	.0	0
			3	3	4		٠
				3	6	0	
				3	3	4	
					2	4	0
					1	5	6
	F	lem	aind	ler		6	2

Daksha Jaydeep Sagar

16

Hexadecimal number system:


- As name implies it has base or radix of 16 and symbols are: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Its machine language
- Group of 4 bit is called nibble and 2 nibble or 8 bit is called word.
- Also known as Hex number system

_	Hex	Dec	Oct	Bin
_	00	00	00	00000
	01	01	01	00001
	02	02	02	00010
	03	03	03	00011
	04	04	04	00100
	05	05	05	00101
	06	06	06	00110
	07	07	07	00111
	08	08	10	01000
	09	09	11	01001
	$0\mathbf{A}$	10	12	01010
	0 B	11	13	01011
	0C	12	14	01100
	0D	13	15	01101
	0E	14	16	01110
	0F	15	17	01111
Daksha J	a Jû eep Sag	ar 16	20	10000

17

Hex to binary and vice versa:

- Its very simple as in octal to binary conversation
- Like in octal, make group of for to convert binary to hex and put 4 digit binary value for any hex digit to convert it to binary

Hex to binary conversation

1111 0001 0000 0010 F102

Binary to Hex Conversation

Hex to Octal and vice versa:

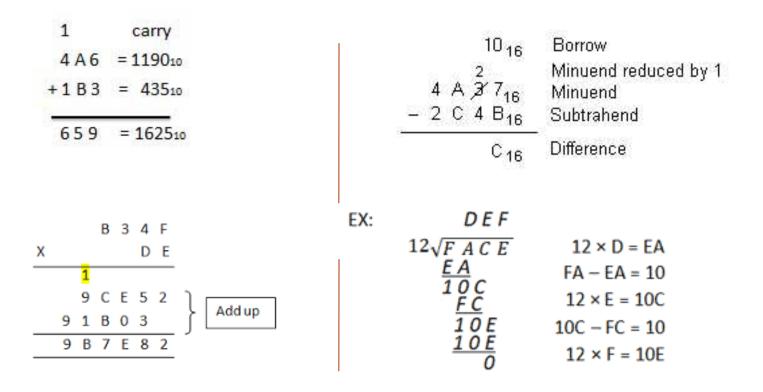
• To convert to octal number , first convert it to binary and then to octal and vice versa.

1101010

Hex to octal Conversation				Octal to Hex Conversation			
Step 1:				Step 1			
Hex to Binary Conversion				Octal to Binary Conversion			
В	5		А	7	5	2	
1011	0101		1010	111	101	010	
So the binary equivalent is 101101011010				So the binary equivalent is 11			
Step 2:				Step 2:			
Binary to Octal Conversion				Binary to Hex Conversion			
<u>101</u>	<u>101</u>	011	<u>010</u>	0001	1110	<u>1010</u>	
5	5	3	2	1	D	9	

Hex to Decimal and vice versa:

• Method will be same as in binary to decimal conversation. Here we are using base of 16 instead of 2.


$1F4_{16}$

positional powers of 16: 16^3 16^2 16^1 16^0 decimal positional value:4096256161Hexadecimal number:1F4

- $(1 \times 256) + (F \times 16) + (4 \times 1)$ = $(1 \times 256) + (15 \times 16) + (4 \times 1)$
- $= 256 + 240 + 4 = 500_{10}$

16	427	Remainders in hexadecimal
	26	11=B
	1	10=A
	0	1

>Hex Addition, subtraction, multiplication, division:

